US009319283B2

a2 United States Patent 10) Patent No.: US 9,319,283 B2
Ponnavaikko et al. (45) Date of Patent: Apr. 19, 2016
(54) SYSTEMS AND METHODS FOR CREATING 2002/0173971 Al* 11/2002 Stirpeetal.coeeee. 705/1
WEB SERVICE COMPOSITIONS 2003/0163450 Al* 82003 Borenstein et al. 707/999.001
2003/0217044 Al* 112003 Zhangc.c...... GOGF 9/546
. . 2004/0054690 Al* 3/2004 Hillerbrand et al. 707/104.1
(75) Inventors: Kovendhan Ponnavaikko, Tamil Nadu 5005/0021707 AL* 12005 Fendt HO4Q 3/00
(IN); Ramsés V. Morales, Sunnyvale, 709/223
CA (US) 2005/0049924 Al* 3/2005 DeBettencourtet al. 705/21
2006/0206348 Al* 9/2006 Chencccoeeen. GO06Q 10/06
(73) Assignee: Xerox Corporation, Norwalk, CT (US) 705/7.11
2006/0206440 Al* 9/2006 Andersonetal. 705/500
3k
(*) Notice: Subject to any disclaimer, the term of this 2006/0225064 AL* 1072006 Lee ..o G067F 127;23
patent is extended or adjusted under 35 2010/0153426 Al* 6/2010 Kimetal.cccoovvrrr.nn.. 707/765
U.S.C. 154(b) by 405 days. 2011/0179007 A1* 72011 Shi ..ooovvrirorenn, .. 707/706
2011/0270842 Al* 112011 Dettinger et al. 707/805
(21) Appl. No.: 13/405,416 2013/0091090 Al* 4/2013 Spivacketal. 707/608
(22) Filed: Feb. 27, 2012 FOREIGN PATENT DOCUMENTS
(65) Prior Publication Data WO WO 2008015417 *2/2008 GOG6F 17/30
US 2013/0227147 A1 Aug. 29, 2013 OTHER PUBLICATIONS
(51) Int.Cl Pautasso, C.: Composing RESTful services with JOpera. In: Interna-
GO6F 17/30 (2006.01) tional Conference on Softwareware Composition 2009. vol. 5634.,
HO4L 1224 (2006.01) Springer (Jul. 2009) 142-159.
(52) U.S.CL (Continued)
CPC HO4L 41/5083 (2013.01); HO4L 41/5045
. . . (2013.01) Primary Examiner — Oleg Survillo
(58) Field of Classification Search Assistant Examiner — Linh T Neuven
CPC HO04L 67/16; HO4L 29/12113; HO4L By
61/1541; HOAL 67/02: HOAL 45/00; HOAL (74) Attorney, Agent, or Firm — MH2 Technology Law
49/35; HO4L 65/1016; HO4L 67/28: Hoar, ~ Group, LLP
67/2823; HO4L 67/327; HO4L 67/12; HO4L
69/329; GO6Q 40/00; GO6Q 40/04; GO6Q 67 ABSTRACT
USPC 707/104. 760 809'3(7)1)092/;22(7}93394(2)/2036 Exemplary embodiments provide systems and methods for
709/224 202 ’203 ’230 ’231 232 238, 246, connecting services, including web services, using interme-
’ ’ ’ ’ ’ ’ 70’9 /217’ diate data exchange objects to create composition services.
See application file for complete search history. Data exchange objects may be service independent objects
’ that represent the inputs and/or outputs of various services.
(56) References Cited The systems and methods may employ data exchange objects

U.S. PATENT DOCUMENTS

to determine whether two services are composable and to
implement and execute composite services according to the
data exchange objects.

6,847,974 B2* 1/2005 Wachtelc.ccooevevvenne 717/143
7,099,885 B2* 8/2006 Hellman et al.
8,140,680 B2* 3/2012 Behrendtetal. 709/226 9 Claims, 8 Drawing Sheets
\ 100
120
"2 ;L 1 / gutpuiCumencyAmount:
HONEY DEO nuther
" orodictame:
String »
/

GET - PRODUCT -
DETAILS SVC.

CURRENCY -
CONVERTER

sting

SVC

outputCurrencyCod:
string

autputCurrencyCode
string

US 9,319,283 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Website: Yahoo Pipes. http://pipes.yahoo.com/pipes/ (2010).
accessed Feb. 16, 2012.

Khalaf, R., Mukhi, N., Weerawarana, S.: Service-oriented composi-
tion in bpeldws. In: WWW (Alternate Paper Tracks). (2003).
Ankolekar, A., Burstein, M.H., Hobbs, I.R., Lassila, O., Martin, D.L.,
Mcllraith, S.A., Narayanan, S., Paolucci, M., Payne, T.R., Sycara,
K.P, Zeng,H.: Daml-s: Semantic markup for web services. In:
SWWS. (2001) 411-430.

Ponnekanti, S.R., Fox, A.: Sword: A developer toolkit for web service
composition. In: Proceedings of the 11th International WWW Con-
ference (WWW2002). (2002).

Mcllraith, S.A., Son, T.C.: Adapting Golog for Composition of
Semantic Web Services. In: Proceedings of the Eighth International
Conference on Knowledge Representation and Reasoning
(KR2002). (2002).

Website: FluidDB. http://fluidinfo.com/ (2010).

* cited by examiner

US 9,319,283 B2

Sheet 1 of 8

Apr. 19,2016

U.S. Patent

Buins funs
‘BponiaueUnIndinG

)

Suins
, ‘aponhatslncndu
OAS

} Ol

‘adf) Aovanng

Buins

H3LEAANCO
- AONFHING

. Jequini Junouy
“ Astsanagindu

By
oAU GG

[
O3 =
<

i
<
-

Buis
804 Aousiing
/ 9l
vzl
BGwny Buiis
piegeoud s ™ Qnposd
soquny A [orssIiag
UROURYEUBIUNY L= 10N00Hd - 139
/ i | |
w Sug
a0l 4
030 AINCH
/ 2l
07

US 9,319,283 B2

Sheet 2 of 8

Apr. 19,2016

U.S. Patent

NCHYNAHIY 592

el mm%gohm_ﬂ% 1

f
m

i

HA

5 35k HOMY m 3 f“m,& HJY
Ey3SANOD SIdvO0HYA SG0RH 4L
{ T} HOMYES S0 FHL 1V S50

3 ill.

G

O
i <.L

SIS m.%

5,1 ?P g.{Luzf DCMY zo

mucz

J ,_%wm

3

N

N 0L

Om mx :u ; zo: mﬁ “%,%u

ﬁ“i

z

677

SAE0R VY (8 0L
AL L

077

US 9,319,283 B2

Sheet 3 of 8

Apr. 19,2016

U.S. Patent

AdAL AICH mm: m

TG40
1S 0L AT
m im_ ES >

i 901

N
0140w
s E m.r

,;,)

%ﬂz NiZ#
7b ¥3A0 SHENIVLS
?; WIS HN0A0
{15 LML 50

Y AL IS S0

<
L2
[

AT L0 AL

W

100

MH04 0950

SNIGOON Tel!

‘UL SNHLS AdANG 3

US 9,319,283 B2

Sheet 4 of 8

Apr. 19,2016

U.S. Patent

T

SNOILYICOSSY -
S430040 -

5430 045 -

OIS
Yiva 040

T

/l!,w\.i\\

(e

»

HOR INIONS

Yo e > NOILAZ3XE

e 03d
/ /

iz 0t€

k-3

US 9,319,283 B2

Sheet 5 of 8

Apr. 19,2016

U.S. Patent

¥ 9l

F e pwao] | fel [1]

308x7 + asodwion

dew O30 e DAS

O3 1d 3OAS

Ay 9504WO0T SOAS

ABNg 030 Iding
Assnpy 030 indu
A8 380 030
A9 80 OAS

LIOBBIDOSSY SjBaln
180 030 91e8ig
AT R0 DAS 010

LY

) / {x 1001 030

Sje L |oepy aus fsnurt A | o fauoy 500] SOAIY 8oUBisiey

X JBI0IT 1BUIBI JOSOIIN

%

(o)

US 9,319,283 B2

Sheet 6 of 8

Apr. 19,2016

U.S. Patent

§ Old

9000 puB O | 1 | | |
ayexy + esodwng
dew 030 2 OAS
030 8d SOAS
Ay 8s0don SOAS
Gl "
BujsiapoDfousuny dus I 10! “mp&%m@ AsnD 030 Inding
g S QU NS 1Np0IguRa)) Ay R3¢ indy|
ohe e fic
uﬂ. &mggéumgﬁm&ﬁ_ﬁ.ﬁ_@Em%m@ ARG 20 030
m,a Buigs:adf | AoussnoAsuop A mmm EE:c”uaobu_soi%m@ feng Jed DAS
. . 07
(squinuunouyEsusunU Aeuo b7 005 € Buusiewenjonpeiduos) |1 UORRINOSSY 9jR8I) M 7

_\M 055 »\m spnpoigyosy || 190 O30 SIERID
075 i 180 OAS 818210

. SAuly 030 Asuop SINKINQ JAS LIND
3 %[00 03

© @ A A b 921,030
045 LG
BB | 0B SIS {SHU Ay | OBH Bl 001 WY 80UBIBlEY N
e 125010% 3 19LIBIE HOSOWIN {008

U.S. Patent

Apr. 19,2016 Sheet 7 of 8 US 9,319,283 B2
fﬁ@ﬁ
CREATE ADEFINITION FOR A SERVIGE g0
¥
CREATE A DATA EXCHANGE OBJECT TO REPRESENT AN
INTERFACE OBJECT OF THE SERVICE 520
¥
CREATE AMAPPING OF THE INTERFACE OBJECT OF THE
SERVICE TO THE DATA EXCHANGE QBJECT 530
¥
STORE THE DEFINITION, THE DATA EXCHANGE OBJECT
AND THE MAPPING ™-640
Y
DETERMINE WHETHER TWO SERVICES MAY BE CONNECTED
USING THE STORED DATA EXCHANGE OBIECT THE N_ e
DEFINITION FOR THE SERVICE, AND THE MAPPING 0
J
~._POSSBLE? _~
CONNEGT THE TWO SERVICES TO CREATE A
NEW COMPOSITION SERVICE ™-670

¥

FIG. 6

U.S. Patent Apr. 19,2016 Sheet 8 of 8 US 9,319,283 B2

700
/
T~
I e
e STORAGE
10
/ X
MEMORY .
20 s
o /
|| PROGRAM
75 i 0

DATABASE |

NETWORK

FIG. 7

US 9,319,283 B2

1
SYSTEMS AND METHODS FOR CREATING
WEB SERVICE COMPOSITIONS

FIELD OF THE INVENTION

This disclosure relates to connecting services, and more
particularly, to connecting web services using a data
exchange object.

BACKGROUND

Recent years have witnessed increasing interest in creating
and using widely accessible services, including web services
implemented using representational state transfer (REST)
style architectures. Unlike the heavy-weight Simple Object
Access Protocol (SOAP)-based standards, RESTful services
are loosely coupled and simpler to handle for developers and
users alike. The large numbers of RESTful services and the
simple interfaces have enabled the creation of mashups of
multiple services to serve diverse purposes.

Making or forming a new composition service by combin-
ing or connecting multiple individual services, however, is
time consuming and difficult due to the syntactic and seman-
tic differences of the individual services. As a result, skilled
users with programming knowledge are generally needed to
build a composition of services or applications from multiple
web-services. Typically, the composition of RESTful web
services requires considerable programming effort. In order
to get heterogeneous services to work together, skilled users
must write adaptors to handle the difference in data encoding
schemes (ASCII, URL, UTF-8, etc.), the conversion of for-
mats (JSON, XML, PHP, etc.), and communication protocol
differences (SOAP, REST, etc.). And, semantically relating
heterogeneous services requires perhaps more significant
skilled effort.

Solutions such as JOpera, and Yahoo Pipes allow program-
mers to use a GUI to create a workflow of services and
connect the corresponding input and output attributes. How-
ever, the programmers are also required to provide adaptors
required to couple pairs of services by handling the differ-
ences in terms of data encoding and formats. Moreover, such
GUI based orchestration engines typically provide no hint to
the developers regarding the composability of services in the
first place—i.e., whether it is semantically possible to inter-
connect them. In such systems, developers must learn the
working details of the different services to determine whether
they can be used together. Another example is the BPEL4AWS
standard which is used for the static composition of services.
This standard too does not support the discovery of possible
compositions on demand.

There is ongoing research into using semantic web service
languages, Al planning, rule-based plan generation, and situ-
ation calculi, for automating the composition of available
services to fulfill user requirements. Despite several efforts in
these areas, there is no tool that lay users without program-
ming skills can use to generate service compositions.

Semantic and syntactic differences between services not
only make it difficult to program or automate the composition
of a set of services, they also make it difficult to realize that
two disparate services can be used together, especially in
unforeseen conditions. For example, consider a composition
where the output of an MP3 encoder service is used as the
input for a picture framer service. To a non-programmer, this
composition does not seem to make sense and may be con-
sidered unworkable because the two services seem semanti-
cally incompatible. By considering in detail, however, the
application programming interfaces (APIs) of these two ser-

10

15

20

25

30

35

40

45

50

55

60

65

2

vices, a person that understands software would find that the
MP3 encoder outputs a JPG file (among other data) that
represents the artwork for the encoded sound track, and the
picture framer can accept a JPG file to then frame it.

In addition to difficulties in determining whether the inter-
faces of two services are compatible, services, especially web
services are always evolving and changing their APIs, thus
potentially becoming incompatible with the applications or
services that use them. Keeping track of these changes, while
avoiding any coupling between services, compositions, and
applications built from a particular composition is challeng-
ing.

The present disclosure provides several novel improve-
ments to current service composition techniques, including
improvements that enable lay users to connect web services
easily and efficiently, without any programming knowledge.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate embodi-
ments of the invention and together with the description,
serve to explain the principles of the invention. Wherever
convenient, the same reference numbers have been used to
refer to the same or similar components. In the figures:

FIG.1is a block diagram of an exemplary system utilizing
a data exchange object to connect services, consistent with
embodiments of the invention;

FIGS. 2A and 2B illustrate an exemplary organization
structure for storing a definition of a web service, consistent
with embodiments of the invention;

FIG. 3 is a block diagram of an exemplary system for
creating and managing data exchange objects and web ser-
vice compositions, consistent with embodiments of the
invention;

FIG. 4 is a depiction of an exemplary user interface for
creating and managing data exchange objects and web ser-
vice compositions, consistent with embodiments of the
invention;

FIG. 5 is a depiction of another exemplary user interface
for creating and managing data exchange objects and web
service compositions, consistent with embodiments of the
invention;

FIG. 6 is a flowchart of an exemplary process for connect-
ing services, consistent with embodiments of the invention;
and

FIG. 7 is a block diagram of an exemplary computing or
data processing system that may be used to implement
embodiments consistent with the invention.

DESCRIPTION OF EMBODIMENTS

In general, embodiments consistent with the present dis-
closure provide systems and methods that may be used to
democratize the process of creating complex compositions
out of simple services. Simplifying the process of service
composition may help to quickly increase the breadth of the
palette in service marketplaces, including web service mar-
ketplaces available in the Internet.

Systems and methods consistent with this disclosure may
provide a framework that enables lay users with little or no
programming knowledge to create new compositions from a
set of existing services. Various embodiments may employ
inputs obtained from users of the systems and methods for
their evolution. In such embodiments, the systems and meth-
ods may evolve with inputs obtained from the community.

US 9,319,283 B2

3

Various embodiments create, store, and utilize abstract
intermediate object types, called Data Exchange Objects
(DEOs), for representing data objects that are exchanged
between services (e.g., web services), while being service
independent. A DEO may represent any data object that is
output by, or input to, a service, such a U.S. address DEO, a
geocode DEO, an album record DEO, an online product
DEQO, etc. In various embodiments, a DEO may serve as an
indirect connector of services. In various implementations, a
user without any details ofthe I/O objects of two services may
check for the composability (i.e., connectability or compat-
ibility) of the services by searching for intermediate DEOs
associated with both services. For example, if one of the
possible outputs of a service (in part or in whole) can be
mapped to a particular DEO, and that same DEO can be
mapped to one of the possible inputs of another service, then
those services can be connected, through the DEO, and thus
composed.

FIG. 1 is a block diagram of an exemplary system 100
utilizing a data exchange object to connect services, consis-
tent with embodiments of the invention. In the example
shown, system 100 include a Get_Product_Details service
110, a Currency_Converter service 130, and a Money DEO
120 that connects the two services and models the service
interfaces and the mapping between outputs of Get_Product_
Details service 110 and inputs of Currency_Converter service
130.

In the example shown in FIG. 1, the Get_Product_Details
service 110 accepts a productld input 90 and returns or out-
puts data object(s) (e.g., a JavaScript Object Notation (JSON)
object) with details about the product in an online market,
including productName output 112, pricePerUnit output 114,
and currencyType output 116. In pseudocode, the outputs
may be represented with a structure as follows:

{ “productName”:*...”,
“pricePerUnit™:...,

“currency Type™:...” }.

As shown, the CurrencyConverter service 130 accepts an
input JSON object(s) (e.g., a JSON object) specifying the
currency that needs to be converted, including inputCurren-
cyAmount input 132, inputCurrencyCode input 133, and out-
putCurrencyCode input 134. In pseudocode, these inputs may
be represented with a structure as follows:

{ “inputCurrencyAmount”,
“inputCurrencyCode”:“...”
“outputCurrencyCode”:

CurrencyConverter service 130 returns the amount in the
output currency according to current exchange rates in data
object(s) such as outputCurrency Amount output 137 and out-
putCurrencyCode output 138. Composition of these two ser-
vices may be useful for a user who wants to know the current
price of a product in his/her local currency type.

In various embodiments, a DEO may serve as an indirect
connector of services. In the example shown in FIG. 1, the
Money DEO 120 includes two attributes: a numerical Amount
attribute 122 and a currency Type attribute 124.

10

15

20

25

30

35

40

45

50

55

60

65

4

In pseudocode, these attributes or members may be repre-
sented with a structure as follows:

{ “numericalAmount™:...,
“currencyType™:...” }.

As shown in the example of FIG. 1, two of the output
members of the GetProductDetail service 110 (e.g., pricePe-
rUnit output 114 and currencyType output 116) may be asso-
ciated with or mapped to the Money DEO 120 (e.g., to the
numericalAmount attribute 122 and the currencyType
attribute 124, respectively. In additional, two of the input
members of the CurrencyConverter service 130 may be asso-
ciated with or mapped to the members of Money DEO 120
(e.g., InputCurrency Amount input 132 may be mapped to
numericalAmount attribute 122, and inputCurrencyCode
input 133 may be mapped to currencyType attribute 124).

In pseudocode, the Money DEO 120 may be represented
with a structure as follows:

{ “name”:“Money”,
“structure”:
{ “numericalAmount”:*”,

5

“currencyType”:” } }.

In some embodiments, DEOs may be implemented as
structured data objects that follow a grammar similar to that
of'a JSON object. For example, the grammar used to generate
DEOs may include:

object — {} I { members }

members — pair | pair , members

pair — string : value

array — [1![elements]

element — value | value , elements

value — string | number | object | IMT | array | true | false | null.

Using this type of grammar, a DEO for representing the
daily weather may be:

{ “name”:“DailyWeather”,
“structure”:
P o
{ “maximumTemperature”:”,

ssssss

“metric”:* } }

Invarious embodiments, once a DEO, such as Money DEO
120 or the above-described DailyWeather DEO is created, a
lay user may create a composition of the two services 110 and
130 without any knowledge of the intrinsic details of either
service. In various embodiments, a user without any details of
the I/O objects of two services may also check for the com-
posability of services using intermediate DEO(s). If one of
the possible outputs of a service (in part or in whole) can be
mapped to a particular DEO, and that same DEO can be
mapped to one of the possible inputs of another service, then
those services can be connected, through the DEO, and thus
composed. In various embodiments, a DEO may represent the
input (or output) of a service if such a mapping exists.

In the example of FIG. 1, Money DEO 120 indicates to a
user that Get_Product_Details service 110 and Currency_
Converter service 130 are semantically compatibility to some
degree, as Money DEO 120 specifies that the members pri-
cePerUnit output 114 and currencyType output 116 of Get-

US 9,319,283 B2

5

ProductDetails service 110 are equivalent to the members
inputCurrencyAmount input 132 and inputCurrencyCode
input 133, respectively, of CurrencyConverter service 130. In
the example shown, Money DEO 120 specifies this by map-
ping the same attribute to an output of Get_Product_Details
service 110 and an input Currency_Converter service 130.
For instance, pricePerUnit output 114 is mapped numerical-
Amount attribute 122, which is also mapped to inputCurren-
cyAmount input 132.

In various embodiments, the mapping or association
between an input and/or output of a service and a DEO may be
stored as part of the DEO itself, stored as part of the definition
of each service, or stored separately.

Although the exemplary embodiments discussed, and the
exemplary name “DEO” refers to representation of data
objects, in other embodiments, DEOs may be used to repre-
sent storage elements, computing resources or elements (e.g.,
Amazon.com’s simple storage service instances (S3™) or
elastic compute cloud instances (EC2™)), and the like. Com-
positions which require access to online data stores and cloud
instances may use such embodiments of DEOs to discover
appropriate services and users may analyze their compatibili-
ties using such DEOs.

Although the exemplary embodiments discussed have
illustrated a single level of indirection between two services,
other embodiments may mappings between two or more sets
of DEOs. For example, if a service ServiceA returns a DEO
DEO1 and a service ServiceB returns a DEO DEO2 and DEO
DEO3 is derivable from the combination of DEOs DEO1 and
DEO2, then the multiple levels of indirection DEO1 to DEO2
to DEO3 make connection of ServiceA to ServiceB possible,
and the DEOs enable for a user to learn about the compos-
ability of service ServiceA with service ServiceB, via DEO
DEO3.

In various embodiments, community participants (e.g.,
system users) may create and store DEOs, such as Money
DEO 120, for use by other users, thus providing a composi-
tion framework regarding the equivalence of data members
from different services. In various embodiments, a commu-
nity of users may create large numbers of flatly structured
intermediate DEOs to help connect services. This approach
contrasts with approaches that involve using formal hierar-
chical domain-specific ontologies and maintaining associa-
tions between service I/O elements and the ontologies to
analyze the equivalence of elements, which are complex and
discourage popular adoption.

One of ordinary skill will recognize that elements may be
added to, removed from, or modified within system 100 with-
out departing from the principles of the invention. For
example, systems consistent with the invention may have any
number of services, inputs, outputs, and DEOs.

FIGS. 2A and 2B illustrate an exemplary organization
structure 200 for storing a definition of a web service, con-
sistent with embodiments of the invention. As shown, orga-
nization structure 200 includes a characteristics column 205
and a value column 210. The example shown also includes an
example column 215, which is provided for clarity of expla-
nation, and which would typically not be implemented in a
data structure that stores the definition of a web service.

In the embodiment shown in FIGS. 2A and 2B, organiza-
tion structure 200 lists set of characteristics of a service, such
as a RESTful web service, which may be defined and stored
in a data structure representing the service. As shown, in
column 205, the characteristics that may be stored to repre-
sent a web service include “parent service name and descrip-
tion” 220, “API method name and description™ 225, “Static
URL” 230, “Dynamic URL” 235, “HTTP method” 240,

10

15

20

25

30

35

40

45

50

55

60

65

6

“Authentication” 245, “Query String Encoding” 250, “Body
Encoding” 255, “Request parameters, requirements, and
details” 260, “Request body type and details” 265, “Response
body type and details” 270, and “Output DEO(s)” 275.

Using these types of characteristics, a service definition for
representing the Yahoo™ Build Your Own Search Service
(BOSS) API may be configured as:

“root”:*Yahoo BOSS”,

“service”:“Web search”,

“urlStatic”:“http://boss.yahooapis.com/ysearch/web/v1/”,

“requestEncoding”:“url”,

“urlDynamic”:{ “*:*“The query string.” },

“method”:“GET”,

“authentication”:{ “type”:“key” },

“queryString”:

[{ “name”:“appid”,
“value”:“-appid-",
“requirement”:“mandatory”,
“mutable”:*no

{ “name”:“format”,
“value”:*“xml”,
“requirement”:“mandatory”,
“mutable”:*no

{ “name”:“stait”,

“value:*17,
“requirement”:“optional”,
“mutable”:“yes” },

{ “name”:“count”,
“value:“3”,
“requirement”:“optional”,
“mutable”:“yes” }],
“responseBody”:

{ “type”:rxml”,
“xmlNamespace”:“http://www.inktomi.com/”,
“responseBodyEncoding”:“utf8” },

“outputDEOs”:

[{ “deo”:“SearchResults” }]}

In this exemplary embodiment, the mapping or association
between the output(s) of the service and one or more DEOs is
stored along with the definition of the service, as illustrated by
row 275 of data organization 200 and by the “outputDEOs”
characteristic in the service definition above. In other
embodiments, a mapping or association between the input(s)
of'the service and one or more DEOs may also be stored with
the definition of a service. The mappings or associations
between the inputs/outputs of a service and DEO(s) may also
be stored in other ways.

In some embodiments, the service to DEO mapping infor-
mation may include details about the equivalence of corre-
sponding members of a service /O object and a DEO. In
various embodiments, information regarding the association
between a DEO and the set of services that are associated with
it is made accessible to a user, aiding the user in building
compositions of services.

One of ordinary skill will recognize that fields may be
added to, deleted from, modified, or reordered in data orga-
nization 200 without departing from the scope of the inven-
tion. For example, a row may be added to specify input DEOs
that are associated with a service.

FIG. 3 is a block diagram of an exemplary system 300 for
creating and managing data exchange objects and web ser-
vice compositions, consistent with embodiments of the
invention. As shown, system 300 includes a user 310, who
utilizes a computer 320, such as a laptop computer, worksta-
tion, or desktop personal computer, to interface with a DEO
execution engine 330. In various embodiments, computer 320
may include a services composition tool, program, or appli-
cation, which communicates with DEO execution engine 330
and enables user 310 to create, store, and utilize Data

US 9,319,283 B2

7

Exchange Objects (DEOs), create store and utilize service
definitions, and/or analyze, create and execute new composi-
tions from a set of services.

In various embodiments, DEO execution engine 330 may
be implemented as a software program or application running
on computing system, such as a server. In various embodi-
ments, DEO execution engine 330 may implement functions
and operations that manage, query, and manipulate DEOs and
service definitions and their associations. For example, DEO
execution engine 330 may include functions and operations
which enable user 310 via a client application on computer
320, to query a DEO data store 350 for appropriate services
and DEOs, create and edit definitions and associations, build
workflows, generate orchestration code and execute it. In
some embodiments where the services employed are web
services, DEO execution engine 330 may interact with, com-
pose, and/or execute services that are accessible via a network
360, such as the Internet. In one specific exemplary embodi-
ment, DEO execution engine 330 may implement the func-
tionality associated with the controls shown on exemplary
user interface 400 of FIG. 4 using a client-server model,
where computer 320 is the client and DEO execution engine
330 is the server.

In the embodiment shown, any client application running
on computer 320 may create and/or interact with stored DEO
data and stored service data through the DEO execution
engine 330. For example, a client application running on
computer 320 such as a composite service execution module
that passes data from one service to another service during
execution may first query the service-to-DEO mappings,
using the DEO execution engine 330, before implementing
the data passing. In some embodiments, a client application
running on computer 320 may also directly interface (not
shown) with a DEO Data Manager 340 and/or the DEO Data
Store 350 for functions not related to service and DEO defi-
nitions.

Inthe embodiment shown in FIG. 3, DEO execution engine
330 is operably connected to DEO Data Manager 340. In
various embodiments, DEO Data Manager 340 controls the
creation, maintenance, storage, and retrieval of information
related to service composition functions and DEOs, which, in
the embodiment shown is stored in DEO Data Store 350. In
various embodiments, DEO Data Store 350 may store service
and DEO definitions, as well as service-DEO and DEO-
service associations or mappings.

In various embodiments, DEO Data Store 350 may be
implemented as a networked, distributed, highly-available
key-value data store, such as Hadoop’s HBase™ data store,
Amazon’s SimpleDB™ data store, or the Cassandra™, Giz-
zard™ or Redis™ data stores, among others. In such embodi-
ments, a pseudo data-base may be built on top of the key-
value data store, as represented, for example, by DEO Data
Manager 340, which may be responsible for a set of queries
and operations on the data. As shown, DEO Data Manager
340 may provide an interface used by DEO Execution Engine
330 for interacting with the data in DEO Data Store 350. As
mentioned, in some embodiments, DEO Data Manager 340
may also provide an interface used by client applications
running on computer 320, such as a graphical services com-
position tool or the like.

In various embodiments wherein DEO Data Manager 340
and DEO Data Store 350 are implemented as a key-value data
store, DEO Data Manager 340 may provide the following
features and functions: (1) an interface that receives a unique
key, and returns a unique value associated to that key, (2) an
interface to create or update a value associated with a key, (3)

10

15

20

25

30

35

40

45

50

55

60

65

8

high-availability, and (4) low-latency. Such embodiments, by
virtue of (3) and (4), may easily scale with the number of
key-value pairs stored.

In various embodiments, instead of a key-value data store,
any other kind of data store may be used, such as a RDBMS
with a SQL interface or the like, as no particular type of data
store implementation is critical to the present disclosure.

In various embodiments, the service definitions, DEO defi-
nitions and associations or mappings among them may be
generated and maintained by users, such as user 310, as
humans may comprehend difficult-to-recognize connections
and correlations between the APIs of services and between
DEOs. In such embodiments, social collaborations may be
leveraged to create and maintain large collections of DEO and
service related data, similar to the data management platform
FluidDB.

One of ordinary skill will recognize that the exemplary
system 300 shown in FIG. 3 is necessarily simplified for
conciseness and clarity of explanation, and that that elements
and components may be added to, removed from, combined,
or modified within system 300 without departing from the
principles of the invention without departing from the scope
of the invention. For example, computer 320 may be con-
nected to DEO execution engine 330 via a network, such as
network 360 (e.g., the Internet), and/or DEO execution
engine 330 may also be connected to DEO Data Manager 240
via a network, such as network 360. For another example,
system 300 may be implemented such that the functionality
of DEO execution engine 330 and DEO Data Manager 240
are combined in a single program, application or server. For
yet another example, DEO Data Store 350 may be imple-
mented as multiple data stores, with the data distributed
among them.

FIG. 4 is a depiction of an exemplary user interface 400 for
creating and managing data exchange objects and web ser-
vice compositions, consistent with embodiments of the
invention. In various embodiments, user interface 400 may be
a composition GUI in which users, such as user 310, may
query a data store, (e.g., DEO data store 350) for appropriate
services and DEOs, create and edit definitions and associa-
tions, build workflows, generate orchestration code for con-
necting the outputs and inputs of services and execute the
code.

As shown, user interface 400 includes a controls area 410
and awork display area 405. Other arrangements are possible.
A user who wishes to compose or connect two services, for
example serviceA and serviceB, may employ the controls in
controls area 410 and the displays in work display area 405 to
determine: (1) whether serviceA can be composed with, or
connected to serviceB (i.e., whether the services are syntac-
tically compatible); and (2) which (if any) data objects link
serviceA and serviceB (i.e., whether the services are seman-
tically compatible).

Checking for syntactic compatibility primarily deals with
verifying whether the outputs of one service can be used as
inputs to the other service. For example, in order for serviceA
to be composable with serviceB, the Internet Media Type
(IMT) returned as output by serviceA must be acceptable as
input by serviceB. For example, if serviceA returns images in
JPEG format and serviceB accepts images of GIF format
only, then serviceA and serviceB are not syntactically com-
patible because they cannot be directly connected.

Adaptors which handle the conversion of formats (JPEG,
GIF, JSON, XML, PHP, etc.), the differences in data encoding
schemes (ASCII, URL, UTF-8§, etc.), and which address com-
munication protocol differences (SOAP, REST, etc.) may be
employed to make services syntactically compatible. In vari-

US 9,319,283 B2

9

ous embodiments, structured definitions for web services
(see, for example, FIG. 2) may be employed as a means of
checking for and enabling syntactic composability of ser-
vices.

The controls and displays of user interface 400 enable a
user to view and analyze the semantic differences and equiva-
lences between input and output data objects of services. For
instance, the query controls and resultant displays of service
and/or DEO information allow a user to determine whether
equivalent members are named differently in different ser-
vices, whether the same name is used to represent entirely
different members by different services, and the like, such
that the user may determine whether services are semanti-
cally compatible.

In the exemplary embodiment shown, controls area 410
includes 11 controls 415-460. More or fewer controls may be
used. The functionality of each exemplary control will be
described using the conventions of the exemplary implemen-
tation described in the following paragraph.

Service “1” will be represented as S,. DEO “j” will be
represented as D,. Bach service has a globally unique 1D, and
each DEO has a globally unique ID. Those unique ids are
hashed “H” (e.g., using SHA1) to determine their key “K” in
the data store (e.g., DEO data store 550), and the keys are
represented in the following way, K(S,)=H(S,) and K(D,)=H
(D). Let O(S,;) be the set of DEOs that can be used to represent
the output of service S, and I(S,) be the set of DEOs that can
be used to represent the input of service S,.

Create Service Definition control 415 allows a user to
create or modify the definition of a service in work display
area 405, and then store the service definition, for example in
a data store such as DEO data store 350. In various embodi-
ments, a created service definition may be assigned a unique
1D, such as a number or a string S,, and the unique ID may be
used to store the service definition, for example, by hashing
the unique ID (e.g., H(S,)) and using the result (e.g., K(S,)) as
an index key into the data store. In some embodiments, the
service definition may be stored in association with a times-
tamp indicating the date and time that the definition was last
modified.

In various embodiments, a user may create or modify the
definition of a service by modifying pseudo code, and/or
graphical representations corresponding to features of the
service, in work display area 405. For example, a user may
use an editor to create and store a definition of a weather
service as follows:

{ “root”:“WebServiceX”,

“service”:“Weather Service”,

“url Static”:“http://www.webservicex.net/WeatherForecast.asmx/
GetWeatherByZip Code”,

“requestEncoding”:*

“method”:“GET”,

“authentication”:{ “type”:“none” },

“queryString”:

[{“name”:*ZipCode”,
“value”:”,
“requirement”:“mandatory”,

»ryes”],

»
url”,

“mutable”:
“responseBody”:
{ sstype”:ssxmlas,
“xml|Namespace”:“http://www.webserviceX.NET/”,
“responseBodyEncoding”:“utf8” } }

10

15

20

25

30

35

40

45

50

55

60

65

10
An exemplary XML output of the weather service could
be:

<?xml version="1.0" encoding="utf-8"?>

<WeatherForecasts xmlns:xsi="“http://...” xmlns:xsd="http://...”
xmlns="“http://... >

<Latitude>43.2195625</Latitude>
<Longitude>77.461586</Longitude>

<Details>

<WeatherData>

<Day>Monday, May 03, 2010</Day>
<WeatherImage>http://... </Weatherlmage>
<MaxTemperatureF>63</MaxTemperatureF>
10
<MinTemperatureF>53</MinTemperatureF>
<MaxTemperatureC>17</MaxTemperatureC>
<MinTemperatureC>12</MinTemperatureC>
</WeatherData>

</Details>

</WeatherForecasts>

In some embodiments, the output format of a service may
also be created, modified, and stored by a user using user
interface 400.

Create DEO Definition control 420 allows a user to create
or modity the definition of a DEO in work display area 405,
and then store the DEO definition, for example in a data store
such as DEO data store 350. In various embodiments, a cre-
ated DEO definition may be assigned a unique ID, such as a
number or a string D, and the unique ID may be used to store
the DEO definition, for example, by hashing the unique 1D
(e.g., H(D))) and using the result (e.g., K(D,)) as an index key
into the data store. In some embodiments, the DEO definition
may be stored in association with a timestamp indicating the
date and time that the definition was last modified.

In various embodiments, a user may create or modify the
definition of a DEO by modifying pseudo code, and/or
graphical representations corresponding to features of the
DEO, in work display area 405. For example, a user may use
an editor to create and store a definition of a DailyWeather
DEO as follows:

{ “name’:“DailyWeather”,
“structure”:
{ “maximumTemperature™:*”,
“minimumTemperature”:*”,
“metric”: " } }

Create Service Association control 425 allows a user to
create or modify an association or mapping between an input/
output of a service and an attribute, characteristic, or member
of'a DEO in work display area 405, and then store the asso-
ciation or mapping, for example in a data store such as DEO
data store 350. In some embodiments, the association or
mapping may be stored as part of a service definition or a
DEO definition.

In various embodiments, a user may create or modify the
definition of a service by modifying pseudo code, and/or
graphical representations corresponding to features of the
service, in work display area 405. For an example with
respect to the “Weather Service” service definition and the
“DailyWeather” DEO definition above, in some embodi-
ments, a user may use an editor to create and store a mapping
between the DailyWeather DEO and the output of WebSer-
viceX APIs’ weather service of the textual form:

US 9,319,283 B2

11

DailyWeather.maximum Temperature < —
WeatherForecasts. Details. WeatherData. Max TemperatureF
DailyWeather.minimumTemperature <= —
WeatherForecasts. Details. WeatherData. MinTemperatureF
DailyWeather.metric <= — “Fahrenheit”

Referring for a moment to FIG. 5, there is depicted FIG. 5
an exemplary user interface 500 for creating and managing
data exchange objects and web service compositions, consis-
tent with embodiments of the invention. In the embodiment
shown, a user has activated the Create Service Association
control 425, and the system has created a graphical display in
work display area 405 that allows the user to associate or map
the outputs of a service named CNET service 510 to the
attributes of DEO named Money 570 by drawing or dragging
connectors 550 and 555 between the graphical representa-
tions of the service’s outputs 515-535 and the DEO’s
attributes 540-545.

More specifically in this example, the user may have pre-
viously used the Create Service Definition control 415 or the
Service Definition query control 430 to create and/or display
a definition of CNET service 510, such as:

{ “root”:“CNET”,
“service”:“Product Search”,
“details™:*“Category Ids available at http://developer.cnet.com/docs/”,
“urlStatic”:“http://developer.api.cnet.com/rest/v1.0/
techProductSearch”, “requestEncoding”:“url”,

“method”:“GET”,
“authentication”:{ “type”:“key” },
“queryString”:
[{ “name’:“categoryld”,
“value®=,
P 5. »
‘requirement”:“mandatory”,
“mutable”:“yes” },
{ “name”:“query”,
“value®=,
P 5. »
‘requirement”:“mandatory”,
“mutable”:“yes” },
{ “name”:“iod”,
“value®=,
P 5. »
‘requirement”:“mandatory”,
“mutable”:“yes” },
{ “name’:“stait”,
“value®=,
« : s e »
requirement”:“mandatory”,
“mutable”:“yes™ },
{ “name”:“results”,
“value®=,
P 5. »
‘requirement”:“mandatory”,
“mutable”:“yes” },
{ “name”:“partTag”,
“value®=,
P 5. »
‘requirement”:“mandatory”,
“mutable”:“yes”],
“responseBody”:

{ “type™:*xml”,
“xmlNamespace”:“http://developer.api.cnet.com/rest/v1.0/ns”,
“responseBodyEncoding”:“utf8” } };

Where in this example, an XML output of the CNET ser-
vice may be:

<?xml version="1.0" encoding="utf-8"?>

<CNETResponse realm="“cnet” version="1.0"

xmlns=“http://...” xmlns:xlink="http://... >

<TechProducts start="0" numReturned="1" numFound="277" >
<TechProduct id=*33770783” xlink:href="http://... >
<Name>Apple iPod Touch (third generation, 64GB)</Name >
<Topic id="" ></Topic>

<EditorsRating outOf="10" >9.0</EditorsRating>
<MSRP>399.00</MSRP>

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

<currency Code>$</currencyCode >

<Offers start="0" numReturned="0" numFound="8"/>
</TechProduct>

</TechProducts>

</CNETResponse>

Similarly, for this example, the user may have previously
used the Create DEO Definition control 415 or the DEO
Definition query control 430 to create and/or display a defi-
nition of Money DEO 570, such as:

{ “name”:“Money”,
“structure”:
{ “numericalAmount”:*”,
“currencyType”:” } };

or as shown in FIG. 1 in graphical format.

In some embodiments (not shown), the definition of the
subject service(s) and DEO(s) may be displayed in work
display area 405 of FIG. 5, (for example, in the lower portion
of work display area 405), at the same time as the mapping
connections 550, 555 between the service(s) and the DEO(s).
Other techniques for presenting the relevant information to
the user may also be used.

Using the information from the service definition(s) and
the DEO definition(s), the user may determine the semantic
compatibility or equivalence between service inputs/outputs
and DEOs, and create mappings or associations between
them. As shown in FIG. 5, the user has determined that the
CNET.TechProducts. TechProduct. MSRP output 530 of
CNET service 510 is semantically equivalent to the
Money.numerical Amount attribute 540 of Money DEO 570,
and associated or mapped the two together, as represented by
graphical connector 550. Similarly, the user has determined
that the CNET.TechProducts. TechProduct.M-
SRP.currencyCode output 535 of CNET service 510 is
semantically equivalent to the Money.currencyType attribute
545 of Money DEO 570, and associated or mapped the two
together, as represented by graphical connector 555. In vari-
ous embodiments, the system may automatically check
whether the inputs/outputs and attributes which a user asso-
ciates with each other are also syntactically equivalent, and if
not, employ an appropriate adaptor to resolve syntactic dif-
ferences.

Some services may include a single output (or input) data
object may contains subparts or portions of information that
map to two or more DEO attributes, and vice versa. For such
situations, various embodiments may provide functions (e.g.
a source code subprogram or module) to separate the subparts
and associate each with the appropriate DEO attribute, or vice
versa. For example, if, unlike the example above, the returned
XML object of the CNET service 510 included the element
TechProducts. TechProduct. MSRP 530 having a string value
that specified both the amount of money and the type of
currency, such as “$399.00,” then the system may separate the
currency symbol and the numerical value, using a regular
expression such as “\$([\d\.,]+)\s*” so as to map between the
numerical portion of the CNET service output (i.e., “399.00”)
and the Money.numericalAmount attribute 540 of Money
DEO 570: CNET.TechProducts. TechProduct. MSRP
Money.numerical Amount.

In various embodiments, after a user has finished creating
Service to DEO associations, the system may save the asso-
ciations using a key-indexed storage scheme, as described
below.

US 9,319,283 B2

13

One of ordinary skill will recognize that the exemplary user
interface shown in FIG. 5 is necessarily simplified for con-
ciseness and clarity of explanation, and that information and
controls may be rearranged or presented differently without
departing from the scope of the invention.

Referring again to FI1G. 4, Service Definition Query control
430 allows a user to find and display a service definition(s) in
work display area 405. For example, upon activation of Ser-
vice Definition Query control 430, the system may prompt the
user for the name and/or unique 1D of the service (or generate
the unique ID from the name), and then use the name or
unique ID (e.g. S,) to retrieve the corresponding service defi-
nition from a data store, such as DEO data store 350. In some
embodiments, a key, for example as defined above for service
S,, may be computed and sent to the data store, and the data
store may return the service definition that is retrieved using
the key. In some embodiments, the data store also may return
a timestamp that specifies the latest modification time of the
definition.

DEO Definition Query control 435 allows a user to find and
display a DEO definition(s) in work display area 405. For
example, upon activation of DEO Definition Query control
435, the system may prompt the user for the name and/or
unique 1D of the DEO (or generate the unique ID from the
name), and then use the name or unique ID (e.g. D)) to retrieve
the corresponding DEO definition from a data store, such as
DEO data store 350. In some embodiments, a key, for
example, as defined above for DEO D, may be computed and
sent to the data store, and the data store may return the DEO
definition that is retrieved using the key. In some embodi-
ments, the data store also may return a timestamp that speci-
fies the latest modification time of the definition.

Input DEO Query control 440 allows a user to find a set or
collection of DEOs that match a search parameter(s) (e.g.,
DEOs that represent at least one input of a specified service)
and display them in work display area 405. For example, upon
activation of Input DEO Query control 440, the system may
prompt the user for the name and/or unique ID of the service
(or generate the unique ID from the name), and then use the
name or unique ID (e.g. S,) to retrieve information reflecting
the corresponding input DEO(s) from a data store, such as
DEO data store 350.

In some particular embodiments, to determine I(S;), which
is the set of DEO(s) that represent the input of service S,, the
system may compute the data store key for I(S,), such as
H(H(S,)), which is used to retrieve the appropriate set of input
DEO(s) (and which was previously used by the system to
store the set of input DEO(s) when they were associated with
service S,). In some such embodiments, the query may return
acollection of DEO ids and a timestamp that tells the last time
each DEO was associated with S;, which are displayed in
work display area 405. In other embodiments, the DEO defi-
nitions may be returned.

Output DEO Query control 445 allows auser to find a setor
collection of DEOs that match a search parameter(s) (e.g.,
DEOs that represent at least one output of a specified service)
and display them in work display area 405. For example, upon
activation of Output DEO Query control 445, the system may
prompt the user for the name and/or unique ID of the service
(or generate the unique ID from the name), and then use the
name or unique ID (e.g. S,) to retrieve information reflecting
the corresponding output DEO(s) from a data store, such as
DEO data store 350.

In some particular embodiments, to determine O(S,),
which is the set of DEO(s) that represent the output of service
S,, the system may compute the data store key for O(S;), such
as H(H(H(S,))), which is used to retrieve the appropriate set of

20

25

30

40

45

14

output DEO(s) (and which was previously used by the system
to store the set of output DEO(s) when they were associated
with service S;). In some such embodiments, the query may
return a collection of DEO ids and a timestamp that tells the
last time each DEO was associated with S,, which are dis-
played in work display area 405. In other embodiments, the
DEO definitions may be returned.

Services Compose Query control 450 allows a user to
determine whether two or more service can be composed or
connected to each other, and display the result in work display
area 405. For example, upon activation of Services Compose
Query control 450, the system may prompt the user for the
names and/or unique IDs of at least two services that the user
wishes to form into a composite service, and then use the
names or unique IDs (e.g., S, and S)) to retrieve information
from a data store, (such as DEO data store 350) reflecting
whether at least one DEO exists that maps to an output (input)
of S, and to an input (output) of S,.

In some particular embodiments, to determine if S, and S,
can be composed, the system performs computations to deter-
mine whether O(S,)NI(S,)=0; i.e., to determine if S,’s output
can be represented by at least one DEO that also represents
S’s input. In some such embodiments, the system first
retrieves O(S,) and I(S;) from a data store, which returns a
collection of output DEO IDs corresponding to S, and a col-
lection of input DEO IDs corresponding to S;. Then, for each
DEO in O(S,) (or I(S)) if it has less elements), the system
determines whether the same DEO exists in I(S) (or O(S,))—
i.e. determines which DEOs in O(S;) match a DEO in I(S)). In
certain embodiments, this determination can be done in O(n)
time if the collections are represented as hash tables. The
system adds each matching DEQ, if any, to a list of matches,
which may be displayed in work display area 405. In some
embodiments, if the timestamp associated with a DEO in the
list is newer than the timestamp in O(S,) and I(S)), then the
matching step can be skipped.

Services Per DEO Query control 455 allows a user to
determine what service(s) are associated to a particular DEO,
and display the appropriate service(s) in work display area
405. In various embodiments, this control may be useful for
garbage collection of useless DEOs, measuring the relevance
of a DEO, and the like. For example, upon activation of
Services Per DEO Query control 455, the system may prompt
the user for the name and/or unique ID of the DEO (or gen-
erate the unique ID from the name), and then use the name or
unique ID (e.g. D)) to retrieve information reflecting the ser-
vice(s) that are associated with the DEO from a data store,
such as DEO data store 350.

The processing for the Input DEO query control 440 and
the Input DEO query control 445 illustrates embodiments that
discover the DEOs associated to a particular service. In typi-
cal usage of the system, the number of DEOs associated to a
single service may be small, while on the other hand, the
number of services associated to a single DEO may be large.
Accordingly, some embodiments provide two techniques for
a user to determine the services that are represented by a
DEO: (1) techniques that determine and provide the list of
services associated with a DEO D, and (2) techniques that
determine and provide information indicating whether a
specified service S, and a specified DEO D;, are related.

Services Per DEO Query control 455 provides one exem-
plary implementation of the former technique. In some par-
ticular embodiments, Services Per DEO Query control 455
causes the system to determine the key used to query the data
store for the list of services associated with a DEO D, com-
puted as H(H(D,)). In various embodiments, this query may
return a timestamp of last modification, an integer represent-

US 9,319,283 B2

15

ing number of blocks, and a first block, wherein such embodi-
ments divide the list of services into blocks of equal size. If
there are multiple blocks, the system queries for subsequent
blocks using H(concatenate(H(D,)I1)) as the key, where i is
the block index and is greater than O as the first block (i=0) is
returned by the first query.

In such embodiments, to determine if S, is associated to D,
the system may perform a query using H(concatenate
(K(D)IK(S,))) as the key, and the returned value may an
indicator of association, for example, a timestamp or yes/no
binary indicator. If the data store cannot find a value for this
key (e.g., the query returns null or some other non-success
indicator), then there is no association between S, and D,.

As with all the descriptions of queries in this disclosure, the
values retrieved by queries were previously stored in the data
store at locations determined by the same keys that are later
used to retrieve the values, for instance, upon activation of
controls 430-455.

Services to DEO Mapping Query control 460 allows a user
to find and display associations or mappings between ser-
vice(s) and DEO(s) in work display area 405. For example,
upon activation of Service Definition Query control 430, the
system may prompt the user for the name and/or unique ID of
a service and/or DEO (or generate the unique ID from the
name), and then use the names or unique IDs (e.g. S, and D))
to retrieve information from a data store, such as DEO data
store 350, describing the mapping or association between the
specified DEO D, and inputs/outputs of the specified service
S;.

In some particular embodiments, the system first deter-
mines whether the specified DEO represents the output or
input of the specified service. The processing described with
respect to the Services Per DEO Query control 455, the Input
DEO query control 440, and the Input DEO query control 445
illustrates embodiments that determines whether a specified
DEO represents the output or input of a specified service.
Using such processing, the system may determine whether a
DEO D; is associated with or mapped to the service S,, and
whether the DEO D; is in O(S,) or in I(S,). Next, the system
may query the mapping definition, e.g., by using H(concat-
enate(K(S,), K(D,)), “I”) as the key for a DEO in I(S,), or
H(concatenate(K(S,), K(D)), “0”)) for a DEO in O(S,). The
returned information or values from the query will contain the
mapping between attributes, which were stored previously
using the same key, for example when the mapping was
created.

In various embodiments, as with the other query com-
mands or controls, the returned information from the Services
to DEO Mapping Query control 460 may be displayed to the
user in work display area 405. For instance, continuing the
previous examples presented above, activating the Services to
DEO Mapping Query control 460 and providing as inputs
information identifying the “Weather Service” service and
the “Daily Weather” DEO may cause the system to retrieve or
fetch and display in work display area 405 mapping informa-
tion such as:

DailyWeather.maximum Temperature < —
WeatherForecasts. Details. WeatherData. Max TemperatureF
DailyWeather.minimumTemperature <= —
WeatherForecasts. Details. WeatherData. MinTemperatureF
DailyWeather.metric < — “Fahrenheit”

In some embodiments, the same information may be alter-
natively or simultaneously displayed in a graphical format,

30

40

55

60

65

16

similar to the graphical format shown in FIG. 1 or FIG. 5.
Other types of graphical or non-graphical displays may also
be used.

Compose and Execute control 465 allows a user to build
workflows and generate orchestration code in work display
area 405, and execute the code. In various embodiments,
Compose and Execute control 465 may invoke a service
execution module, (e.g., a module of DEO execution engine
330), which calls the services which a user has composed or
interconnected and passes data from one service to another
during execution according to service-to-deo-to-service map-
pings or associations, as described in this disclosure.

For example, the system may display a composition web
service in the work display area 405, for example as shown in
FIG. 1, and upon activation of the Compose and Execute
control 465 may execute the Get_Product_Details service
110, pass its outputs 114 and 116 to the corresponding inputs
132 and 133 of Currency_Converter service 130 as mapped
according to Money DEO 120, and provide information from
the outputs 137 and 138 of Currency_Converter service 130
to the user.

One of ordinary skill will recognize that the exemplary user
interface shown in FIG. 4 is necessarily simplified for con-
ciseness and clarity of explanation, and that information and
controls may be added, removed, rearranged or presented
differently without departing from the scope of the invention.

FIG. 6 is a flowchart of an exemplary process 600 for
connecting services, consistent with embodiments of the
invention. In various embodiments, process 600 may imple-
mented in software executing on a processor, such as the
processors of DEO execution engine 330, computer 320 and/
or DEO data manager 340, in hardware, or in a combination
of the two.

As shown in the example of FIG. 6, process 600 begins
with creating a definition for a service (stage 610). For
example, in some embodiments, a user, such as user 310, may
define a service using a graphical composition tool executing
as a client on computer 320, and DEO execution engine 330,
functioning as a server, may create the service definition.

Next, process 600 creates a data exchange object (i.e.,
DEO) to represent an interface object, such as an output data
object or an input data object, of a service (stage 620), for
example, the service whose definition was created in stage
610. For example, in some embodiments, user 310 may define
a DEO using a graphical composition tool executing as a
client on computer 320, and DEO execution engine 330,
functioning as a server, may create the DEO definition.

In stage 630, process 600 creates a mapping of the interface
object of the service to the DEO. For example, in some
embodiments, user 310 may define a mapping or association
using a graphical composition tool executing as a client on
computer 320, and DEO execution engine 330, functioning as
a server, may create the data representing the mapping.

At stage 640, process 600 stores the service definition, the
data exchange object, and the mapping. For example, in vari-
ous embodiments, DEO execution engine 330 may store the
service definition in DEO data store 350, which is managed
by DEO data manager 340. In various embodiments, DEO
execution engine 330 may also store the DEO definition in
DEO data store 350, which is managed by DEO data manager
340. In various embodiments, the service definition and/or the
DEO definition may be stored according to a key based on a
unique ID of the service, for example, as described previ-
ously. In various embodiments, DEO execution engine 330
may also store the mapping data in DEO data store 350, which
is managed by DEO data manager 340. In some embodi-
ments, the mapping may be stored according to akey based on

US 9,319,283 B2

17

aunique ID ofthe DEO, for example, as described previously.
In other embodiments, the mapping may be stored as part of
a service definition and/or a DEO definition.

Process 600 then determines whether two services may be
connected using the stored DEO definition, the services’ defi-
nitions, and the mapping (stage 650). For example, in some
embodiments, DEO execution engine 330 may execute code
to implement the functionality described previously with
respect to the Services Compose Query control 450, and
provide to user 310 via computer 320 an indication of whether
two services may be connected to form a composite service.

Atstage 660, process 600 branches based on whether or not
the two services may be connected (e.g., whether the two
services are composable). If the services cannot be connected
(stage 660, No), then process 600 ends. If, on the other hand,
the two services can be connected (e.g., an output(s) of one
service map to a DEO that maps to an input(s) of the other
service), the process 600 proceeds to stage 670.

At stage 670, process 600 connects the two services to
create a new composition service. For example, in some
embodiments, DEO execution engine 330 may execute code
to implement the functionality described previously with
respect to Compose and Execute control 465, and provide to
user 310 via computer 320 prompts for input data required by
the composition service and data representing the output data
produced by the composite service.

One of ordinary skill will recognize that stages may be
added to, deleted from, modified, or reordered in process 600
without departing from the scope of the invention. For
example, stage 640 may be combined with each of stages
610-630 to store definitions and mappings as they are created.
For another example, stage 670 may be eliminated, for
example, in situations where a user does not want to execute
the composition service.

FIG. 7 is a block diagram of an exemplary computing
system or data processing system 700 that may be used to
implement embodiments consistent with the invention. Other
components and/or arrangements may also be used. In some
embodiments, computing system 700 may be used to imple-
ment a DEO execution engine 330 and/or a DEO data man-
ager 340 and/or a graphical composition tool 320.

Computing system 700 includes a number of components,
such as a central processing unit (CPU) 705, a memory 710,
an input/output (I/0) device(s) 725, and a nonvolatile storage
device 720. System 700 can be implemented in various ways.
For example, an implementation as an integrated platform
(such as a workstation, server, personal computer, laptop,
smart phone, etc.) may comprise CPU 705, memory 710,
nonvolatile storage 720, and /O devices 725. In such a con-
figuration, components 705, 710, 720, and 725 may connect
and communicate through a local data bus and may access a
database 730 (implemented, for example, as a separate data-
base system) via an external /O connection. I/O comp-
onent(s) 725 may connect to external devices through a direct
communication link (e.g., a hardwired or local wifi connec-
tion), through a network, such as a local area network (LAN)
or a wide area network (WAN), and/or through other suitable
connections. System 700 may be standalone or it may be a
subsystem of a larger system.

CPU 705 may be one or more known processing devices,
such as a microprocessor from the Core™ 2 family manufac-
tured by the Intel™ Corporation of Santa Clara, Calif.
Memory 710 may be one or more fast storage devices con-
figured to store instructions and information used by CPU
705 to perform certain functions, methods, and processes
related to embodiments of the present invention. Storage 720
may be a volatile or non-volatile, magnetic, semiconductor,

10

15

20

25

30

35

40

45

50

55

60

65

18

tape, optical, or other type of storage device or computer-
readable storage medium, including devices such as CDs and
DVDs, meant for long-term storage.

Intheillustrated embodiment, memory 710 contains one or
more programs or subprograms 715 loaded from storage 720
or from a remote system (not shown) that, when executed by
CPU 705, perform various operations, procedures, processes,
or methods consistent with the present invention. Alterna-
tively, CPU 705 may execute one or more programs located
remotely from system 700. For example, system 700 may
access one or more remote programs via network 735 that,
when executed, perform functions and processes related to or
implementing embodiments of the present invention.

In one embodiment, memory 710 may include a pro-
gram(s) 715 that implements a web services connection
application, including implementing process 700 and user
interface displays as shown in FIGS. 4 and 5 and/or a program
715 that implements a DEO execution engine 330. In some
embodiments, memory 710 may also include other programs
or applications that implement other methods and processes
that provide ancillary functionality to the invention. For
example, memory 710 may include programs that gather
from various sources, organize, store, and/or generate web
services data used by DEO execution engine 330, and pro-
grams that communicate with other systems, such as DEO
data manager 340.

Memory 710 may be also be configured with other pro-
grams (not shown) unrelated to the invention and/or an oper-
ating system (not shown) that performs several functions well
known in the art when executed by CPU 705. By way of
example, the operating system may be Microsoft Win-
dows™, Unix™, Linux™, an Apple Computers™ operating
system, Personal Digital Assistant operating system such as
Microsoft CE™, or other operating system. The choice of
operating system, and even to the use of an operating system,
is not critical to the invention.

1/0 device(s) 725 may comprise one or more input/output
devices that allow data to be received and/or transmitted by
system 700. For example, I/O device 725 may include one or
more input devices, such as a keyboard, touch screen, mouse,
and the like, that enable data to be input from an administra-
tive user, such as a system operator. Further, [/O device 725
may include one or more output devices, such as a display
screen, CRT monitor, LCD monitor, plasma display, printer,
speaker devices, and the like, that enable data to be output or
presented to a user, such as user 310. I/O device 725 may also
include one or more digital and/or analog communication
input/output devices that allow computing system 700 to
communicate, for example, digitally, with other machines
and devices. Other configurations and/or numbers of input
and/or output devices may be incorporated in I/O device 725.

In the embodiment shown, system 700 is connected to a
network 735 (such as the Internet, a private network, a virtual
private network, or other network, which may include net-
work 360 of FIG. 3), which may in turn be connected to
various systems (e.g., DEO data manager 340) and comput-
ing machines (not shown in FIG. 7), such as personal com-
puters, laptop computers 320, and/or smart phones of users
310 who wish to utilize DEO execution engine 330. In gen-
eral, system 700 may input data from external machines and
devices and output data to external machines and devices via
network 735.

In the exemplary embodiment shown in FIG. 7, database
730 is a standalone database external to system 700. In other
embodiments, database 730 may be hosted by system 700. In
various embodiments, database 730 may manage and store
data used to implement systems and methods consistent with

US 9,319,283 B2

19

the invention. For example, database 730 may implement
DEO data store 350 and/or manage and store data structures
such as data structure 220, which contain service, DEO, and
mapping data used by DEO execution engine 330, graphical
composition tool 320, or user interface displays, such as those
illustrated in FIGS. 4-5.

Database 730 may comprise one or more databases that
store information and are accessed and/or managed through
system 700. By way of example, database 730 may be an
Oracle™ database, a Sybase™ database, or other relational
database. Systems and methods consistent with the invention,
however, are not limited to separate data structures or data-
bases, or even to the use of a database or data structure.

The above disclosure provides examples of systems and
methods for composing compound services by the aggrega-
tion and connecting of other existing services. In various
embodiments, the connections between service are made and/
or represented through use of abstract intermediate object
types referred to as data exchange objects (DEOs) that rep-
resent the data objects that are exchanged between services.
Various embodiments provide a user with the ability to deter-
mine the validity of a connection by testing whether the
outputs of one service (in whole or in part) can be mapped to
a particular DEO, and that same DEO can be mapped to one
of'the possible inputs (in whole or in part) of a second service.
Where two or more services can be connected, they compose
a new compound service. In various embodiments, the sys-
tems and methods include functionality to perform queries
returning the inputs/outputs of DEOs, to test whether two
DEOs can be connected, and to compose the new service.

It will be apparent to those skilled in the art that various
modifications and variations can be made to the structures and
methodologies described herein. Thus, it should be under-
stood that the invention is not limited to the examples dis-
cussed in the specification. Rather, the present invention is
intended to cover modifications and variations.

It will be appreciated that variants of the above-disclosed
and other features and functions, or alternatives thereof, may
be combined into many other different systems or applica-
tions. Various presently unforeseen or unanticipated alterna-
tives, modifications, variations, or improvements therein may
be subsequently made by those skilled in the art which are
also intended to be encompassed by the following claims.
Moreover, the claims can encompass embodiments in hard-
ware, software, or a combination thereof.

What is claimed is:
1. A method, implemented using a computing system, for
composing compound services, the method comprising:

creating, using an electronic processor, a first definition of
a first service, the first service including a first interface
object, wherein the first definition of the first service is
service independent and comprises a pseudocode repre-
sentation;

creating, using an electronic processor, a data exchange
object that represents the first interface object of the first
service, wherein the data exchange object comprises a
pseudocode representation;

creating, using an electronic processor, an association
between the first interface object of the first service with
the data exchange object, wherein creating the associa-
tion between the first interface object of the first service
with the data exchange object comprises creating the
association when the first interface object of the first
service is syntactically compatible with the data
exchange object and is semantically compatible with the
data exchange object;

5

20

25

35

40

45

55

20

storing, using an electronic processor, the data exchange
object, wherein the storing the data exchange object
comprises storing the association between the first inter-
face object of the first service with the data exchange
object as part of the data exchange object itself;

creating, using an electronic processor, a second definition
of a second service, the second service including a sec-
ond interface object, wherein the second definition of the
second service comprises a pseudocode representation;

determining, using an electronic processor, that the second
interface object associates to the data exchange object;

connecting, using an electronic processor, the second ser-
vice to the first service through the data exchange object,
wherein an output of the first service connects to an input
of the data exchange object, and wherein an output of the
data exchange object connects to an input of the second
service;

storing, using an electronic processor, the first definition;

providing, using an electronic processor, to a user, access to
the first definition, the data exchange object, and the
association;

receiving a user request to identify data exchange objects
that are associated with a service, including data that
identifies the first service; and

identifying the data exchange object in response to the
request.

2. The method of claim 1, further comprising:

indicating, to the user, that the second service is connect-
able to the first service.

3. The method of claim 1, further comprising:

receiving a request to identify services that are associated
with a data exchange object, including data that identi-
fies a first data exchange object; and

identifying the first service in response to the request.

4. A system for composing compound services, the system

comprising:

a memory containing instructions; and

a processor, operably connected to the memory, that
executes the instructions to perform operations compris-
ing:

creating a first definition of a first service, the first service
including a first interface object, wherein the first defi-
nition of the first service is service independent and
comprises a pseudocode representation,

creating a data exchange object that represents the first
interface object of the first service, wherein the data
exchange object comprises a pseudocode representa-
tion,

creating an association between the first interface object of
the first service with the data exchange object, wherein
creating the association between the first interface object
of the first service with the data exchange object com-
prises creating the association when the first interface
object of the first service is syntactically compatible
with the data exchange object and is semantically com-
patible with the data exchange object;

storing, using an electronic processor, the data exchange
object, wherein the storing the data exchange object
comprises storing the association between the first inter-
face object of the first service with the data exchange
object as part of the data exchange object itself;

creating a second definition of a second service, the second
service including a second interface object, wherein the
second definition of the second service comprises a
pseudocode representation,

determining that the second interface object associates to
the data exchange object,

US 9,319,283 B2

21

connecting the second service to the first service through
the data exchange object, wherein an output of the first
service connects to an input of the data exchange object,
and wherein an output of the data exchange object con-
nects to an input of the second service,

storing the first definition,

providing, to a user, access to the first definition, the data

exchange object, and the association;

receiving a user request to identify data exchange objects

that are associated with a service, including data that
identifies the first service; and

identifying the data exchange object in response to the

request.

5. The system of claim 4, the operations further compris-
ing:

indicating, to the user, that the second service is connect-

able to the first service.

6. The system of claim 4, the operations further compris-
ing:

receiving a request to identify services that are associated

with a data exchange object, including data that identi-
fies a first data exchange object; and

identifying the first service in response to the request.

7. A non-transitory computer-readable medium containing
instructions that when executed implement a method com-
prising:

creating a first definition of a first service, the first service

including a first interface object, wherein the first defi-
nition of the first service is service independent and
comprises a pseudocode representation;

creating a data exchange object that represents the first

interface object of the first service, wherein the data
exchange object comprises a pseudocode representa-
tion;

creating an association between the first interface object of

the first service with the data exchange object; wherein
creating the association between the first interface object
of the first service with the data exchange object com-

5

20

25

30

35

22

prises creating the association when the first interface
object of the first service is syntactically compatible
with the data exchange object and is semantically com-
patible with the data exchange object;

storing, using an electronic processor, the data exchange
object, wherein the storing the data exchange object
comprises storing the association between the first inter-
face object of the first service with the data exchange
object as part of the data exchange object itself;

creating a second definition of a second service, the second
service including a second interface object;

determining that the second interface object associates to
the data exchange object;

connecting the second service to the first service through
the data exchange object, wherein an output of the first
service connects to an input of the data exchange object,
and wherein an output of the data exchange object con-
nects to an input of the second service;

storing the first definition;

providing, to a user, access to the first definition, the data
exchange object, and the association;

receiving a user request to identify data exchange objects
that are associated with a service, including data that
identifies the first service; and

identifying the data exchange object in response to the
request.

8. The non-transitory computer-readable medium of claim

7, further comprising instructions for:

indicating, to the user, that the second service is connect-
able to the first service.

9. The non-transitory computer-readable medium of claim

7, further comprising instructions for:

receiving a request to identify services that are associated
with a data exchange object, including data that identi-
fies a first data exchange object; and

identifying the first service in response to the request.

#* #* #* #* #*

